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Abstract

An analytical and numerical investigation into the dynamic interaction between a cantilever beam with nonlinear

damping and stiffness behavior, modeled by the Duffing-Rayleigh equation, and a non-ideal motor that is connected to the

end of the beam, is presented. Non-stationary and steady-state responses in the resonance region as well as the passage

through resonance behavior when the frequency of the excitation is varied are analyzed. The influences of nonlinear

stiffness, nonlinear damping and the extent of the unbalance in the motor are examined. It is found that in this situation so-

called Sommerfeld effects may be observed; the increase required by a source operating near the resonance results in a

small change in the frequency, but there is a large increase in the amplitude of the resultant vibration and the jump

phenomenon occurs.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When the excitation is not influenced by the response of a vibrating system, it is said to be an ideal system
(traditional ones), or an ideal energy source. Formally, the excitation may be expressed as a pure function of
time connected to a nonlinear oscillator whose dynamics of this system may be described by the equation

€xþ f 1ðx; _xÞ þ f 2ðxÞ ¼ F ðtÞ, (1)

where x refers to the displacement of the primary system, f1 represents the Van der Pol and Rayleigh function,
f2 represents the Duffing function and F(t) is the harmonic external force. This nonlinear differential equation
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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is used in physics, engineering, electronics and many other disciplines. The nonlinear mechanical oscillators
have been studied extensively [1–3].

For non-ideal dynamical systems, the excitation of the vibration systems analyzed here is always limited: on
the one hand by the characteristics of a particular energy source and on the other hand by the dependence of
the motion of the oscillating system on the motion of the energy source. Formally, one must add an equation
that describes how the energy source supplies the energy to the equations that govern the corresponding ideal
dynamical system. In this case the non-ideal nonlinear system can be described by the following system of
coupled differential equations:

m €xþ f 1ðx; _xÞ þ f 2ðxÞ ¼ F ðj; _j; €j; qÞ,

I €jþHð _jÞ ¼ Lð _jÞ þ Rðj; _j; €x; qÞ, (2)

where F ðj; _j; €x; qÞ express the action of the source of energy on the oscillating system (angular velocity of the
motor is not constant), q is the unbalanced coefficient (electric motor with eccentricity), I is the moment of
inertia of mass, the function Rðj; _j; €x; qÞ express the action of the oscillating system on the source of energy,
the function Hð _jÞ is the resistive torque applied to the motor, the function Lð _jÞ is the driving torque of the
source of energy (motor), the function f 1 ¼ ðc1 þ c2 _x

2Þ _x is called Rayleigh’s function and it describe a
nonlinear damping of the system and the function f 2 ¼ k1xþ k2x

3 is called Duffing’s function and it describe
a nonlinear stiffness.

Note that, usually, the inductance is much smaller than the mechanical time constant of the system and in
stationary regime we can take Lð _jÞ as (linear) Lð _jÞ ¼ a� b _j, where a is related to the voltage applied across
the armature of the DC motor, that is, a possible control parameter of the problem and b is a constant for each
model of the DC motor considered.

Two important manifestations can lead to the so-called Sommerfeld effect: first, in the region before
resonance on the atypical frequency–response curve, we note that as the power supplied to the source
increases, the RPM of the motor increases accordingly. However, this behavior does not continue indefinitely.
That is, closer the motor speed moves toward the resonant frequency the more power is required to increase
the motor speed. More formally, a large change in the power supplied to the motor results in a small change in
the frequency, but a large increase in the amplitude of the resulting vibrations. Thus, near resonance it appears
that additional power supplied to the motor only increases the amplitude of the response while having little
effect on the RPM of the motor. Second, the jump phenomena is a nonlinear effect that appears when a
portion of the right branch of the frequency–response curve becomes unstable or when this curve becomes
multivalued. As the driving frequency approaches the natural frequency, the vibrating system can suddenly
jump from one side of resonance to the other. That is, the system operating in a steady-state mode cannot
realize certain frequencies near resonance. The jump appears on the frequency-response curve as a
discontinuity, which indicates a region where steady-state conditions do not exist [4–12].

In this paper, by using the averaging method, we prove the presence of the Sommerfeld effect on a Duffing-
Rayleigh oscillator with non-ideal excitation of periodic and quasi-periodic motion in the stationary and non-
stationary regimes through resonance as an extension of Refs. [9,13,14]. Moreover, we determine the
conditions to compute the maximum and jump points of the resonance curve. For the determination of the
Lyapunov exponents the averaging system is also utilized.

We organize this paper as follows. In Section 2, we present the mathematical model used and the derivation
of the governing equations of motion. In Section 3, we obtain an analytical solution to the analyzed problem,
by using an average procedure to the non-ideal dynamics of the adopted oscillating problem. In Section 4,
we analyzed the non-stationary solutions. In Section 5, we analyzed the steady-state solutions. In Section 6,
we analyzed the special points of the steady-state solutions that define the maximum point and jump point in
the response–frequency curve. In Section 7, we analyzed the influence of the parameters, which in this case are
chosen as the coefficients of nonlinear stiffness and damping. In Section 8, we analyzed the dynamical
behavior of the system with Lyapunov exponents on the non-stationary system. In Section 9, we analyzed the
original system considering stiffness of the softening type where we observe a chaotic regime. In Section 10, we
mention the concluding remarks of this work. Finally comes the acknowledgements and list of the main
references used.
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Fig. 1. Model of the non-ideal cantilever beam.
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2. Model of the non-ideal nonlinear system

We consider the non-ideal problem consisting of a nonlinear cantilever beam supporting an unbalanced
motor with limited power at its free end (see Fig. 1). Its representative mathematical formulation depend on
the Lagrange formulation for a system that has two degrees of freedom, represented by the generalized
coordinates x (cantilever beam displacement) and f (angular displacement of the rotor unbalance). The
kinetic energy T, potential energy V, the dissipative function of the beam GB and the torque exerted by the
motor Gð _fÞ are expressed by

T ¼ 1
2
M _x2 þ 1

2
J _f

2
þ 1

2
mð _x� e _f cos fÞ2 þ 1

2
mðe _f sin fÞ2,

V ¼ 1
2
k1x

2 þ 1
2
k2x4,

GB ¼ �
1
2
c1 _x� 1

2
c2 _x

3; Gð _fÞ ¼ Lð _fÞ �Hð _fÞ, (3)

where Lð _fÞ (depending of the tension U(i)) is the driving torque and Hð _fÞ is the resisting torque.
In this paper, we will extend the work of Bolla et al. [13], introducing the cubic nonlinear damping (the

function GB) and the reduced model, which exhibits on Warminski et al. [9] with parametric coefficient m ¼ 0.
We obtain a nonlinear differential equation of the Duffing-Rayleigh type driven by a non-ideal energy source
in a dimensionless form:

€X þ ð�aþ b _X
2
Þ _X þ ð1þ gX 2ÞX ¼ q1ð

€f cosf� _f
2
sinfÞ,

€f ¼ Gð _fÞ þ q2
€X cosf. (4)

From this we adopt a dot as the differentiation with respect to dimensionless time t and we assume that the
motor’s torque is a linear function of its angular velocity Gð _fÞ ¼ V m � Cm

_f, Vm is considered as a control
parameter and it can be changed according to the voltage of the DC motor, Cm is a constant for each model of
the DC motor considered, a is the coefficient of linear damping, b is the nonlinear damping coefficient, g is the
nonlinear stiffness coefficient, q1 and q2 are the unbalanced coefficients, the natural frequency is one unity, X is
the coordinate oscillatory motion of the considered cantilever beam and _f is the angular velocity of the motor.
3. Averaging equations

In this section, we use the method of averaging [4,15,16] to determine an approximate solution and average
equations. To this end, Eq. (4) is rewritten as

€X þ X ¼ �fâ _X � b̂ _X
3
� ĝX 3 þ q̂1ð

€f cosf� _f
2
sinfÞg,

€f ¼ �fq̂2
€X cosfþ Ĝð _fÞg, (5)
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where

a ¼ �â; b ¼ �b̂; g ¼ �ĝ; q1 ¼ �q̂1; q2 ¼ �q̂2,

Gð _fÞ ¼ V m � Cm
_f ¼ �Ĝð _fÞ (6)

and e, 0oeo1 is an arbitrary small parameter. We apply the method of variation of parameters and let

X ¼ a cosðfþ xÞ, (7)

_X ¼ �a sinðfþ xÞ, (8)

_f ¼ O, (9)

where a, x and O are the new coordinates. In the regime near resonant, the difference between the excitation
frequencies is close to the natural frequency:

O ¼ 1þ �s, (10)

where s is a detuning parameter.
The first derivative of Eq. (7)

_X ¼ _a cosðfþ xÞ � aðOþ _xÞ sinðfþ xÞ. (11)

It follows from Eqs. (8) and (11) that

_a cosðfþ xÞ � a_x sinðfþ xÞ ¼ aðO� 1Þ sinðfþ xÞ. (12)

Differentiating Eq. (8) gives

€X ¼ � _a sinðfþ xÞ � aðOþ _xÞ cosðfþ xÞ. (13)

Substituting Eqs. (10), (11) and (13) into Eq. (5) gives

� _a sinðfþ xÞ � a_x cosðfþ xÞ ¼ aðO� 1Þ cosðfþ xÞ þ �f 1, (14)

where

f 1 ¼ �âa sinðfþ xÞ þ b̂a3 sin3ðfþ xÞ � ĝa3 cos3ðfþ xÞ þ q1O
2 sinf. (15)

Applying the trigonometric identities:

sin2y ¼ 1
2
� 1

2
cos 2y; sin4y ¼ 1

8
ðcos 4y� 4 cos 2yþ 3Þ,

cos4y ¼ 1
8
ðcos 4yþ 4 cos 2yþ 3Þ; sin3 y cosy ¼ 1

8
ð2 sin 2y� sin 4yÞ,

cos3y siny ¼ 1
8
ð2 sin 2yþ sin 4yÞ, (16)

and considering the second equation of Eq. (5) in the resolution of the equations system for _a and _x from
Eqs. (12) and (14), gives the following variational equations:

_a ¼ ��f 1 sinðfþ xÞ ¼ � 1
2âa� 3

8b̂a3 þ 1
2q̂1O

2 cos xþ A1ða; x;f;OÞ
� �

,

a_x ¼ ��as� �f 1 cosðfþ xÞ ¼ � �asþ 3
8
ĝa3 � 1

2
q̂1O

2 sin xþ A2ða; x;f;OÞ
� �

,

_O ¼ �ðĜðOÞ � q̂2aO cosðfþ xÞ cos xþ A3ða; x;f;OÞÞ, (17)

where A1(a, x,f,O), A1(a, x,f,O) and A1(a, x,f,O) are small periodic functions defined as follows:

A1ða; x;f;OÞ ¼ 1
2
âa cosð2fþ 2xÞ þ 1

8
b̂a3½cosð4fþ 4xÞ � 4 cosð2fþ 2xÞ�

� 1
8
ĝa3½2 sinð4fþ 4xÞ þ sinð4fþ 4xÞ� � 1

2
q̂1O

2 cosð2fþ xÞ,
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A2ða; x;f;OÞ ¼ � 1
2
âa sinð2fþ 2xÞ þ 1

8
b̂a3½2 sinð2fþ 2xÞ � sinð4fþ 4xÞ�

� 1
8
ĝa3½cosð4fþ 4xÞ þ 4 cosð2fþ 2xÞ� þ 1

2
q̂1O

2 sinð2fþ xÞ,

A3ða; x;f;OÞ ¼ � 1
2
q̂2aO cosð2fþ xÞ. (18)

We determine a first approximation from the average equations of the right-hand sides of Eq. (17)
(considering a, x and O to be constants over one cycle and integrate (average) the equations over one cycle),
and the result is

_a ¼ 1
2
aa� 3

8
ba3 þ 1

2
q1O

2 cosx,

_x ¼ �ðO� 1Þ þ 3
8
ga2 � 1

2
q1

O2

a
sin x,

_O ¼ GðOÞ � 1
2
aq2O cos x, (19)

where the first equation describes the variation of the amplitude of the oscillation (the behavior of the envelope
of the oscillatory motion of the coordinate X), the second equation describes the variation of the initial phase
of the motion x, the third equation describes the variation of the frequency O (the average value of the angular
velocity of the motor). For the numerical simulation, the following values of parameters are considered:
a ¼ 0.1, b ¼ 0.05, g ¼ 0.1, Cm ¼ 1.5, q1 ¼ 0.2 and q2 ¼ 0.3.

4. Non-stationary solutions

We first determine the amplitude, phase and average angular velocity of the response of Eq. (19) when
q1 ¼ q2 ¼ 0 (there is no interaction between the structure support and the electric motor).

In this case, Eq. (19) can be written as

_a ¼ 1
2
aa� 3

8
ba3,

_x ¼ �ðO� 1Þ þ 3
8
ga2,

_O ¼ GðOÞ. (20)

Solving the third equation of Eq. (20) yields:

O ¼
V m

Cm

þ c1 e
�Cmt; c1 ¼ O0 �

Vm

Cm

. (21)

Solving the first equation of Eq. (20) yields:

a ¼

ffiffiffiffiffiffiffiffi
a=2

p
eaðtþc2Þ

ð1þ ð3=8Þb eaðtþc2ÞÞ
1=2
; c2 ¼

1

a
ln

a0

ða=2Þ � ð3=8Þba2
0

� �
, (22)

where a0 and O0 are the initial conditions.
We solve numerically Eq. (20) with initial conditions a ¼ 0.01, x ¼ 0, O ¼ 0 and Vm ¼ 1 whose results are

shown in Fig. 2 and then we validate Eqs. (21) and (22).
Considering q1 6¼0 and q2 6¼0 for the system in Eq. (19) with q1 ¼ 0.2 and q2 ¼ 0.3, the dynamical interaction

between the cantilever beam and the electric motor is then active and manifestation of the Sommerfeld effect is
present. The time response of the amplitude a and angular velocity O in the non-stationary regime are shown
in Fig. 3 during the passage through resonance. In the time ranges 200ptp350 and 600ptp1500, there exists
a synchronization of motion and oscillations between a and O; in this case the response of X is quasi-periodic
motion. In the time range 350oto600 (resonance capture region) the amplitude and angular velocity are
constant, then the vibration response of the system is of periodic motion.

For the control parameter range 0.5pVmp1.4, the response of X is of quasi-periodic motion, for example,
for Vm ¼ 1.0 is justified by a close curve shown on phase portrait (Fig. 4a). For the range 1.4pVmp2.4, the
response of X is of periodic motion, in this case, for Vm ¼ 1.8 is justified by one point shown on phase portrait
(Fig. 4b). For the range 2.24pVmp6.0, the response of X is of quasi-periodic motion, in this case, for
Vm ¼ 3.0 is justified by a close curve shown on phase portrait (Fig. 4c).
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Fig. 2. Response as a function of the dimensionless time: (a) average angular velocity O(t) and (b) amplitude a(t).

Fig. 3. Non-stationary response as a function of the dimensionless time: (a) angular velocity O(t) and (b) amplitude a(t).
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5. Steady-state solutions

The values of a, O and x for the stationary conditions of motion are determined as the roots of the system of
equations:

1
2
aa� 3

8
ba3 þ 1

2
q1O

2 cos x ¼ 0,

� ðO� 1Þ þ 3
8
ga2 � 1

2
q1

O2

a
sin x ¼ 0,

GðOÞ � 1
2
aq2O cos x ¼ 0. (23)

Combining the first and second equations of Eq. (23) yields:

a2 3

8
ba2 �

a
2

� �2

þ ðO� 1Þ �
3

8
ga2

� �2
" #

¼
1

2
q1O

2

� �2

. (24)
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Fig. 4. Phase portrait in the plane (O(t),X(t)) for (a) Vm ¼ 1.0, (b) Vm ¼ 1.8 and (c) Vm ¼ 3.0.
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Combining the first and third equations of Eq. (23) yields:

a
2

a2 �
3

8
ba4 þ

q1

q2

OGðOÞ ¼ 0. (25)

The amplitude of the cantilever beam and the rotational frequency of motor are determined from Eqs. (24)
and (25), respectively, for each value of the control parameter Vm. The phase of motion in the steady-state
responses is given by

tan x ¼
ð3=8Þga2 � Oþ 1

ð3=8Þba2 � ð1=2Þa
. (26)

The stability of an averaging solution is then determined by the eigenvalues of the Jacobian of the average
system at the average solution. The Jacobian of the average equations is given by

J ¼

a
2
�

9

8
ba2 �

1

2
q1O

2 sinðxÞ q1O cosðxÞ

6

8
gaþ

q1

8a2
O2 sinðxÞ �

q1

2a
O2 cosðxÞ �1�

q1

a
O sinðxÞ

�
q2

2
O cosðxÞ

q2aO
2

sinðxÞ �Cm �
q2

2
a cosðxÞ

2
6666664

3
7777775
. (27)
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The characteristic equation of the Jacobian, evaluated at the average solution (Eqs. (24) and (25)), is then

J3l
3
þ J2l

2
þ J1lþ J0 ¼ 0, (28)

where

J1 ¼
1

2
q1O

2 6ga

8
þ

q1O
2

8a2
sin x

� �
sin xþ

q1q2O
2

2
cos2 x�

q1O
2

2a

a
2
�

9b
8

a2

� �
cos x

� Cm þ
q2a

2
cos x

� � a
2
�

9b
8

a2

� �
þ

q1O
2

2a
cos x Cm þ

q2a

2
cos x

� �
þ 1þ

q1O
a

sin x
� �

q2Oa

2
sin x,

J0 ¼ � detðJÞ; J3 ¼ 1; J2 ¼ �
a
2
þ

9b
8

a2 þ
q1O

2

2a
cos xþ

q2a

2
cos xþ cm. (29)

For stable averaging solutions, the eigenvalues of the Jacobian, or the roots of the above characteristic
equation, must have negative real parts. According to the Routh-Hurwitz criterion, the real part of all
eigenvalues is less than zero and if the following conditions are satisfied:

J0403detðJÞo0; J140; J240; J2J1 � J040. (30)

The criterion of the stationary solutions according to Nayfeh and Mook [4] is that the steady-state motion
of an ideal system is determined by two forms.

Firstly, by direct integration of Eq. (19), then during a long time, the averaging approximates that a, O
and x tend to constant values.

Secondly, the constant solution is obtained by setting the left-hand sides of Eq. (23) to zero ( _a ¼ 0, _O ¼ 0,
_x ¼ 0).
But in this case, for a non-ideal system it is different; for example, considering the values Vm ¼ 1.8 the

responses of O (left hand of Fig. 5) and a (right hand of Fig. 5) become constant motion in the time range
40ptp200. When Vm ¼ 3.0, the responses of O (left hand of Fig. 6) and a (right hand of Fig. 6) become
oscillating motion in a long time. In this case, we cannot determine a solution directly using the Newton
method to the non-ideal problem in the solution of the system of Eq. (23).

Fig. 7 shows the resonance curve of vibration amplitudes of the beam and angular velocity of the motor
versus the sequence increase of the control parameter on steady-state motion. For the ranges
0.6pVmp1.31Vm and 2.24pVmp7.0, one may observe that the responses of the amplitude (left hand of
Fig. 7) and angular velocity (right hand of Fig. 7) are oscillating (marked by two dots, denoting the oscillating
extremes), then we generate the quasi-periodic motion in the non-ideal system, which is obtained by strong
interaction between the beam and the motor [9]. For the range 1.32pVmp2.23, the response of the amplitude
and angular velocity is constant (marked by a dot); then we generate periodic motion in the non-ideal system.
Fig. 5. Response of the angular velocity O(t) and amplitude a(t) for Vm ¼ 1.8.
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Fig. 6. Response of the angular velocity O(t) and amplitude a(t) for Vm ¼ 3.0.

Fig. 7. Curves of responses versus control parameter in steady-state process of O(t) and a(t) in the range 0.6pVmp7.0.
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6. Special points

In this section, we analyze the special points of the steady-state solutions that define the maximum point and
jump point in the response–frequency curve.

We define O�1 ¼ DO in the approximating of jump and we write Eq. (24) as

a2 3

8
ba2 �

a
2

� �2

þ DO�
3

8
ga2

� �2
" #

¼
1

2
q1O

2

� �2

. (31)

From this we can determine the locus of the peak corresponding to rotational frequency in the
frequency–response curve. Making DO�(3/8)ga2 ¼ 0, we obtain

Op ¼ 1þ 3
8
ga2

p, (32)
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and the peak of the amplitude is determined as the roots of the following equation:

ap

3

8
ba2

p �
a
2

� �
�

1

2
q1O

2
p ¼ 0. (33)

Then, the control parameter corresponding to this peak of jump, from Eq. (25), is given by

Vmp ¼
ð3=8Þbq2a

4
p � ðaq2=2Þa2

p þ q1CmO2
p

q1Op

. (34)

Thus, with this control parameter value we can eliminate the Sommerfeld effect. To determine the maximum
points, we write Eq. (25) in the following form:

aq2

2
a2 �

3q2b
8

a4 þ q1DOðVm � CmDOÞ ¼ 0. (35)

Differentiating Eq. (35) with respect to DO and demanding d(a)/dDO ¼ 0 yields DO ¼ (Vm/2Cm), then the
critical frequency of maximum is

Oc ¼ 1þ
V m

2Cm

(36)

and the critical amplitude of maximum, using Eqs. (25) and (36), is determined by

a4
c �

4a
3b

a2
c �

4q1V m

3bq2Cm

V m

2
� Cm

� �
¼ 0. (37)

7. Influence of the parameters in a non-stationary system

In this section, we observe the influence of the parameters of nonlinearities that are the coefficients of
nonlinear stiffness and damping (g, b). The numerical results of the system from Eq. (19) are presented in time
history where the left diagram corresponds to the response of the angular velocity of the motor and the right
diagram corresponds to the response of the amplitude of the cantilever beam on the control parameter range
0.6pVmp7.0, while the other parameters are fixed (see Figs. 8 and 9).

Firstly, we present the effect of the nonlinear stiffness. Fig. 8 illustrates the behavior of two non-stationary
responses that is the comparison for two values of nonlinear stiffness taken as g ¼ 0.05 and g ¼ 0.2. The jump
Fig. 8. Effect of the nonlinear stiffness on time response in the non-stationary process of O(t) and a(t) for g ¼ 0.05 (gray line) and g ¼ 0.2

(black line).
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Fig. 9. Effect of nonlinear damping on time response in the non-stationary process of O(t) and a(t) for b ¼ 0.01 (black line) and b ¼ 0.1

(gray line).

Table 1

Lyapunov’s exponents

Vm Attractor’s type l1 l2 l3

1.0 Quasi-periodic 0.0 �0.079135 �0.145964

1.8 Periodic �0.2192 �0.227961 �1.401873

3.0 Quasi-periodic 0.0 �0.089585 �1.544268
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phenomenon happens for g ¼ 0.05 and g ¼ 0.2 in the time ranges 500oto600 and 750oto850, respectively.
Then to eliminate the jump phenomenon or the effect of Sommerfeld, we need to consider go1. But we
observe that the motor of limited power is not captured or stagnated in the resonance region for g ¼ 0.2
while the oscillation amplitude of the beam is increasing. Secondly, we present the effect of nonlinear damping.
Fig. 9 illustrates the behavior of two non-stationary responses, that is the comparison for two values of
nonlinear damping b ¼ 0.01 and b ¼ 0.1. The jump phenomenon is present in different zones passing through
the resonance region. Then to eliminate the jump phenomenon or Sommerfeld effect, it is necessary to increase
the value of the nonlinear damping. In this case, the resonance capture of the angular velocity and the
vibration amplitude of the foundation are reduced.
8. Lyapunov exponents of the averaging system

In order to complete the dynamic analysis, we evaluate the Lyapunov exponents, using the classical method
described in Ref. [17]. The main expression is

l ¼
1

tN

XN

i¼1

ln
diðtÞ

dið0Þ

� �
, (38)

where l denotes the Lyapunov exponents, the index i represents consecutive initial positions, N represents the
total step number of evolution and d is the separation between two close trajectories, chosen. We remarked
that Eqs. (19) and (27) are conditioned in the MATDSs program [18], based on the routine of Matlabs of
Matworkss, in order to evaluate Lyapunov’s exponents, which are listed in Table 1. Note that if we take into
account Vm ¼ 1.0 and Vm ¼ 3.0, we obtain the confirmation that the considered non-ideal system vibrates in
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quasi-periodical motion (one Lyapunov exponent is zero and the others are negative), and in the case where
we take Vm ¼ 1.8, one confirms that the non-ideal system vibrates periodically (the Lyapunov exponents are
only negative).

9. Dynamics of the original system

In this section, to obtain a chaotic regime, we need to assume that the natural frequency is of negative
value �1. It means that the linear term of the spring stiffness is softening [19]. Here, we consider the parameter
g ¼ 3.0. To numerically solve the governing system of Eq. (5), the RK45 order numerical integration routine is
selected with adaptive step size control according to Dormand and Prince [20]. Figs. 10a, 11a and 12a illustrate
the diagrams of the phase portrait and Figs. 10b, 11b and 12b the power spectrum of the non-ideal system
(beam response). Figs. 10 and 12 show that there is a periodic regime for Vm ¼ 3.0 and Vm ¼ 6.0, respectively
(in cases both attractors of the system are limit cycles and the power spectrum is of one peak). Fig. 11 shows
Fig. 10. Dynamic response of the beam for Vm ¼ 3.0. (a) Phase portrait and (b) power spectrum.

Fig. 11. Dynamic response of the beam for Vm ¼ 4.0. (a) Phase portrait and (b) power spectrum.
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Fig. 12. Dynamic response of the beam for Vm ¼ 6.0. (a) Phase portrait and (b) power spectrum.
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that the non-ideal system is in chaotic regime for Vm ¼ 4.0 (the attractor has divergence of the close phase
trajectories and the power spectrum has a continuous structure and is characterized by the absence of peaks).

10. Conclusion

In this paper, we have demonstrated conclusively that nonlinear stiffness and damping in a cantilever beam
oscillator, subject to a non-ideal excitation (unbalanced motor with limited power supply), may play an
important role.

This fact makes this problem more realistic, according to the experimental results. The method of averaging
discussed here may allow a systematic study of a non-ideal nonlinear system, which may help reveal the
underlying physical mechanisms.

The Sommerfeld effect is reduced or eliminated when the value of the nonlinear stiffness is smaller than one
(1) and the value of the nonlinear damping is increasing during the passage through the resonance region to
the non-stationary and steady-state process.

We determinate the conditions of the special points for reducing or eliminating the manifestations of the
Sommerfeld effect.

In the resonance region of the considered oscillation it has periodic motion and outside the resonance region
it has quasi-periodic motion.
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